Type Here to Get Search Results !

Design of Reinforced Concrete Ninth Edition by JACK C.McCORMAC RUSSELL H.BROWN


        In this book explain about Reinforced Concrete Design that complied with ACI 318-11 (American Concrete Institute) for Building Code included Examples and Problem. Now you can consider with list of content below.
Title: Design of Reinforced Concrete Ninth Edition by JACK C.McCORMAC RUSSELL H.BROWN
Page Number: 742 pages
File type: pdf
File size: 14.9 MB
Permission:  available downloading go to bottom of page.
Content of this book 
1.Introduction

        1.1 Concrete and Reinforced Concrete
        1.2 Advantages of Reinforced Concrete as a Structural Material
        1.3 Disadvantages of Reinforced Concrete as a Structural Material
        1.4 Historical Background
        1.5 Comparison of Reinforced Concrete and Structural Steel for Buildings and Bridges
        1.6 Compatibility of Concrete and Steel
        1.7 Design Codes
        1.8 SI Units and Shaded Areas
        1.9 Types of Portland Cement
        1.10 Admixtures
        1.11 Properties of Concrete
        1.12 Aggregates
        1.13 High-Strength Concretes
        1.14 Fiber-Reinforced Concretes
        1.15 Concrete Durability
        1.16 Reinforcing Steel
        1.17 Grades of Reinforcing Steel
        1.18 SI Bar Sizes and Material Strengths
        1.19 Corrosive Environments
        1.20 Identifying Marks on Reinforcing Bars
        1.21 Introduction to Loads
        1.22 Dead Loads
        1.23 Live Loads
        1.24 Environmental Loads
        1.25 Selection of Design Loads
        1.26 Calculation Accuracy
        1.27 Impact of Computers on Reinforced Concrete Design
        Problems

2.Flexural Analysis of Beams

        2.1 Introduction
        2.2 Cracking Moment
        2.3 Elastic Stresses—Concrete Cracked
        2.4 Ultimate or Nominal Flexural Moments
        2.5 SI Example
        2.6 Computer Examples
        Problems

3.Strength Analysis of Beams According to ACI Code

        3.1 Design Methods
        3.2 Advantages of Strength Design
        3.3 Structural Safety
        3.4 Derivation of Beam Expressions
        3.5 Strains in Flexural Members
        3.6 Balanced Sections, Tension-Controlled Sections, and Compression-Controlled or Brittle Sections
        3.7 Strength Reduction or φ Factors
        3.8 Minimum Percentage of Steel
        3.9 Balanced Steel Percentage
        3.10 Example Problems
        3.11 Computer Examples
        Problems

4.Design of Rectangular Beams and one-Way Slabs

        4.1 Load Factors
        4.2 Design of Rectangular Beams
        4.3 Beam Design Examples
        4.4 Miscellaneous Beam Considerations
        4.5 Determining Steel Area When Beam Dimensions Are Predetermined
        4.6 Bundled Bars
        4.7 One-Way Slabs
        4.8 Cantilever Beams and Continuous Beams
        4.9 SI Example
        4.10 Computer Example
        Problems

5.Analysis and Design of T Beams and Doubly Reinforced Beams

        5.1 T Beams
        5.2 Analysis of T Beams
        5.3 Another Method for Analyzing T Beams
        5.4 Design of T Beams
        5.5 Design of T Beams for Negative Moments
        5.6 L-Shaped Beams
        5.7 Compression Steel
        5.8 Design of Doubly Reinforced Beams
        5.9 SI Examples
        5.10 Computer Examples
        Problems

6.Serviceability

        6.1 Introduction
        6.2 Importance of Deflections
        6.3 Control of Deflections
        6.4 Calculation of Deflections
        6.5 Effective Moments of Inertia
        6.6 Long-Term Deflections
        6.7 Simple-Beam Deflections
        6.8 Continuous-Beam Deflections
        6.9 Types of Cracks
        6.10 Control of Flexural Cracks
        6.11 ACI Code Provisions Concerning Cracks
        6.12 Miscellaneous Cracks
        6.13 SI Example
        6.14 Computer Example
        Problems

7.Bond, Development Lengths, and Splices

        7.1 Cutting Off or Bending Bars
        7.2 Bond Stresses
        7.3 Development Lengths for Tension Reinforcing
        7.4 Development Lengths for Bundled Bars
        7.5 Hooks
        7.6 Development Lengths for Welded Wire Fabric in Tension
        7.7 Development Lengths for Compression Bars
        7.8 Critical Sections for Development Length
        7.9 Effect of Combined Shear and Moment on Development Lengths
        7.10 Effect of Shape of Moment Diagram on Development Lengths
        7.11 Cutting Off or Bending Bars (Continued)
        7.12 Bar Splices in Flexural Members
        7.13 Tension Splices
        7.14 Compression Splices
        7.15 Headed and Mechanically Anchored Bars
        7.16 SI Example
        7.17 Computer Example
        Problems

8.Bond, Development Lengths, and Splices

        8.1 Introduction
        8.2 Shear Stresses in Concrete Beams
        8.3 Lightweight Concrete
        8.4 Shear Strength of Concrete
        8.5 Shear Cracking of Reinforced Concrete Beams
        8.6 Web Reinforcement
        8.7 Behavior of Beams with Web Reinforcement
        8.8 Design for Shear
        8.9 ACI Code Requirements
        8.10 Shear Design Example Problems
        8.11 Economical Spacing of Stirrups
        8.12 Shear Friction and Corbels
        8.13 Shear Strength of Members Subjected to Axial Forces
        8.14 Shear Design Provisions for Deep Beams
        8.15 Introductory Comments on Torsion
        8.16 SI Example
        8.17 Computer Example
        Problems

9.Introduction to Columns

        9.1 General
        9.2 Types of Columns
        9.3 Axial Load Capacity of Columns
        9.4 Failure of Tied and Spiral Columns
        9.5 Code Requirements for Cast-in-Place Columns
        9.6 Safety Provisions for Columns
        9.7 Design Formulas
        9.8 Comments on Economical Column Design
        9.9 Design of Axially Loaded Columns
        9.10 SI Example
        9.11 Computer Example
        Problems

10.Design of Short Columns Subject to Axial Load and Bending

        10.1 Axial Load and Bending
        10.2 The Plastic Centroid
        10.3 Development of Interaction Diagrams
        10.4 Use of Interaction Diagrams
        10.5 Code Modifications of Column Interaction Diagrams
        10.6 Design and Analysis of Eccentrically Loaded Columns Using Interaction Diagrams
        10.7 Shear in Columns
        10.8 Biaxial Bending
        10.9 Design of Biaxially Loaded Columns
        10.10 Continued Discussion of Capacity Reduction Factors, φ
        10.11 Computer Example
        Problems

11.Slender Columns

        11.1 Introduction
        11.2 Nonsway and Sway Frames
        11.3 Slenderness Effects
        11.4 Determining k Factors with Alignment Charts
        11.5 Determining k Factors with Equations
        11.6 First-Order Analyses Using Special Member Properties
        11.7 Slender Columns in Nonsway and Sway Frames
        11.8 ACI Code Treatments of Slenderness Effects
        11.9 Magnification of Column Moments in Nonsway Frames
        11.10 Magnification of Column Moments in Sway Frames
        11.11 Analysis of Sway Frames
        11.12 Computer Examples
        Problems

12.Footings

        12.1 Introduction
        12.2 Types of Footings
        12.3 Actual Soil Pressures
        12.4 Allowable Soil Pressures
        12.5 Design of Wall Footings
        12.6 Design of Square Isolated Footings
        12.7 Footings Supporting Round or Regular Polygon-Shaped Columns
        12.8 Load Transfer from Columns to Footings
        12.9 Rectangular Isolated Footings
        12.10 Combined Footings
        12.11 Footing Design for Equal Settlements
        12.12 Footings Subjected to Axial Loads and Moments
        12.13 Transfer of Horizontal Forces
        12.14 Plain Concrete Footings
        12.15 SI Example
        12.16 Computer Examples
        Problems

13.Retaining Walls

        13.1 Introduction
        13.2 Types of Retaining Walls
        13.3 Drainage
        13.4 Failures of Retaining Walls
        13.5 Lateral Pressure on Retaining Walls
        13.6 Footing Soil Pressures
        13.7 Design of Semigravity Retaining Walls
        13.8 Effect of Surcharge
        13.9 Estimating the Sizes of Cantilever Retaining Walls
        13.10 Design Procedure for Cantilever Retaining Walls
        13.11 Cracks and Wall Joints
        Problems

14.Continuous Reinforced Concrete Structures

        14.1 Introduction
        14.2 General Discussion of Analysis Methods
        14.3 Qualitative Influence Lines
        14.4 Limit Design
        14.5 Limit Design under the ACI Code
        14.6 Preliminary Design of Members
        14.7 Approximate Analysis of Continuous Frames for Vertical Loads
        14.8 Approximate Analysis of Continuous Frames for Lateral Loads
        14.9 Computer Analysis of Building Frames
        14.10 Lateral Bracing for Buildings
        14.11 Development Length Requirements for Continuous Members
        Problems

15.Torsion

        15.1 Introduction
        15.2 Torsional Reinforcing
        15.3 Torsional Moments that Have to Be Considered in Design
        15.4 Torsional Stresses
        15.5 When Torsional Reinforcing Is Required by the ACI
        15.6 Torsional Moment Strength
        15.7 Design of Torsional Reinforcing
        15.8 Additional ACI Requirements
        15.9 Example Problems Using U.S. Customary Units
        15.10 SI Equations and Example Problem
        15.11 Computer Example
        Problems

16.Two-Way Slabs, Direct Design Method

        16.1 Introduction
        16.2 Analysis of Two-Way Slabs
        16.3 Design of Two-Way Slabs by the ACI Code
        16.4 Column and Middle Strips
        16.5 Shear Resistance of Slabs
        16.6 Depth Limitations and Stiffness Requirements
        16.7 Limitations of Direct Design Method
        16.8 Distribution of Moments in Slabs
        16.9 Design of an Interior Flat Plate
        16.10 Placing of Live Loads
        16.11 Analysis of Two-Way Slabs with Beams
        16.12 Transfer of Moments and Shears between Slabs and Columns
        16.13 Openings in Slab Systems
        16.14 Computer Example
        Problems

17. Two-Way Slabs, Equivalent Frame Method

        17.1 Moment Distribution for Nonprismatic Members 
        17.2 Introduction to the Equivalent Frame Method    
        17.3 Properties of Slab Beams 
        17.4 Properties of Columns
        17.5 Example Problem 
        17.6 Computer Analysis
        17.7 Computer Example 
        Problems

18. Walls 

        18.1 Introduction
        18.2 Non–Load-Bearing Walls
        18.3 Load-Bearing Concrete Walls—Empirical Design Method
        18.4 Load-Bearing Concrete Walls—Rational Design
        18.5 Shear Walls
        18.6 ACI Provisions for Shear Walls
        18.7 Economy in Wall Construction
        18.8 Computer Example
        Problems

19 Prestressed Concrete

        19.1 Introduction
        19.2 Advantages and Disadvantages of Prestressed Concrete
        19.3 Pretensioning and Posttensioning
        19.4 Materials Used for Prestressed Concrete
        19.5 Stress Calculations
        19.6 Shapes of Prestressed Sections
        19.7 Prestress Losses
        19.8 Ultimate Strength of Prestressed Sections
        19.9 Deflections
        19.10 Shear in Prestressed Sections
        19.11 Design of Shear Reinforcement
        19.12 Additional Topics
        19.13 Computer Example
        Problems

20 Reinforced Concrete Masonry

        20.1 Introduction
        20.2 Masonry Materials
        20.3 Specified Compressive Strength of Masonry
        20.4 Maximum Flexural Tensile Reinforcement
        20.5 Walls with Out-of-Plane Loads—Non–Load-Bearing Walls
        20.6 Masonry Lintels, 611
        20.7 Walls with Out-of-Plane Loads—Load-Bearing
        20.8 Walls with In-Plane Loading—Shear Walls
        20.9 Computer Example
Problems

A Tables and Graphs: U.S. Customary Units 
B Tables in SI Units 
C The Strut-and-Tie Method of Design 

        C.1 Introduction
        C.2 Deep Beams
        C.3 Shear Span and Behavior Regions
        C.4 Truss Analogy
        C.5 Definitions
        C.6 ACI Code Requirements for Strut-and-Tie Design
        C.7 Selecting a Truss Model
        C.8 Angles of Struts in Truss Models
        C.9 Design Procedure

D Seismic Design of Reinforced Concrete Structures

        D.1 Introduction
        D.2 Maximum Considered Earthquake
        D.3 Soil Site Class
        D.4 Risk and Importance Factors
        D.5 Seismic Design Categories
        D.6 Seismic Design Loads
        D.7 Detailing Requirements for Different Classes of Reinforced Concrete Moment Frames
        Problems

Glossary
Index 

click download
Please Share

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.